

Savitribai Phule Pune University Board of Studies - Automobile and Mechanical Engineering Undergraduate Program - Mechanical Engineering (2019 pattern) Honors in "Energy Management in Utility Systems"

Course		S	chei	ing ne eek)	Ex		inati Ind N			eme		Cre	edit	
Code	Course Name	HT	PR	TUT	ISE	ESE	ΤW	PR	OR	TOTAL	TH	PR	TUT	TOTAL
	Semest	ter-`	V					-	-					
<u>302021MJ</u>	Energy Management	4	-	-	30	70	-	-	-	100	4	-	-	4
<u>302022MJ</u>	Energy Modelling Lab	-	2	-	-	-	50	-	1	50	-	1	-	1
	Total	4	2	-	30	70	50	-	-	150	4	1	-	5
	Semest	er-V	I											
<u>302023MJ</u>	Energy Efficiency of Thermal Utilities	4	-	-	30	70	-	-	-	100	4	-	-	4
	Total	4	-	-	30	70	-	-	-	100	4	-	-	4
	Semeste	er-V	ΊΙ											
<u>402024MJ</u>	Electrical Energy Systems	4	-	-	30	70	-	-	-	100	4	-	-	4
<u>402025MJ</u>	Lab Practice	-	2	-	-	-	50	-	-	50	-	1	-	1
	Total	4	2	-	30	70	50	-	-	150	4	1	-	5
	Semeste	r-V	III											
<u>402026MJ</u>	Sustainable Energy Conversion Systems	4	-	-	30	70	-	-	-	100	4	-	-	4
<u>402027MJ</u>	Energy audit Practice/Field Visit	-	-	2	-	-	50	-	-	50	-	-	2	2
	Total	4	-	2	30	70	50	-	-	150	4	-	2	6

Abbreviations: TH: Theory, PR: Practical, TUT: Tutorial, ISE: In-Semester Exam, ESE: End-Semester Exam, TW: Term Work, OR: Oral

1. Rules and Regulations for Honors / Minors Programs

R1.1 It is absolutely not mandatory to any student to opt for Honours or Minors Program. Choice is given to individual student to undertake Honors/Minors programs from the third year engineering (Fifth Semester) to fourth year engineering (Eighth Semester). Honors/Minors programs will be opted from offered programs by SPPU. Once selected he/she will not be permitted to change the Honors/Minors program in forthcoming semesters.

R1.2 The registration for Honors/Minors Programme will lead to gain additional credits to such students. The result of Honours/Minors Program will get reflected in ledgers to be maintained at University only. After the completion of the Honors/Minors program by concerned students, details of credits earned in Honors/Minors program be printed in the mark sheet of eighth semester. For those students, who will not be able to complete Honors/Minors program, details about the additional credits earned will not get printed.

R1.3 Credits earned through registration and successful completion of the Honors/Minors Programme will **not** be considered for the calculation of SGPA or CGPA.

As per the standard practice, SGPA and CGPA calculations will be done with common base only by considering mandatory credits assigned for the Bachelor programme as per the structure approved by the Academic Council.

R1.4 Students once registered for the programme need to complete all credits assigned for the specific Honors and Minors Programme in the period of 4 years from the Semester-V. Degree with Honors/Minors will be awarded only after the completion of Honors/Minors Programme along with respective UG program degree.

Student may opt to cancel the registration for Honors/Minors within this period of 4 years. After 4 years expire automatically Bachelor's degree will be awarded to such a student provided he/she has earned the credits needed for graduation.

R1.5 Backlog Honors/Minors courses will not contribute in the decision of A.T.K.T.

2. Examination Scheme:

R2.1 Examinations for Honors/Minors Program will get organized at the University Level. Question paper will be common for all students who had opted/registered for the specific Honors/Minors Program. Evaluation of answer books for Honors/Minors program will be done at the university level.R.2.2 Additional examination fees as per prevailing rules and regulations will be charged from those students who had registered for Honors/Minors Program to match the expenses for paper setting and the assessment of answer books at the CAP Centre.

Instructions:

- Minimum number of Experiments/Assignments in PR/Tutorial shall be carried out **as mentioned in the syllabi** of respective courses.
- Assessment of tutorial work has to be carried out similar to term-work. The Grade cum marks for Tutorial and Term-work shall be awarded on the basis of **continuous evaluation**.

		302021MJ: H	Energy Mar	nagement	
Teaching	Scheme	Credi	its	Examina	tion Scheme
Theory	4 Hrs./Week	Theory	4	In-Semester	30 Marks
				End-Semester	70 Marks
				g, Basic Electrical E	ngineering,
Course Object	ermodynamics,	Applied Thermo	Juynamics		
-	liarise Global an	d Indian energy	scenario.		
	e student conver	•••			
	y energy audit m			nomics.	
Course Outcor	nes:				
On completion	of the course the	e learner will be	able to;		
CO1. DEM	IONSTRATE ge	eneral aspects of	f Energy ma	nagement	
CO2. ILLU	JSTRATE differ	ent energy polic	cies.		
CO3. SUM	IMARIZE and e	xplain need of e	energy audit	and energy manage	ement.
	IONSTRATE er				
				financial analysis te	
CO6. ILLU	JSTRATE envir	onment impact of	of Energy sy	stems and climate	change.
		Cours	se Contents	5	
	lobal Energy sc				
					onsumption in various
		-			n and Projected future
					ergy consumption on
			omic develo	opment and social tr	ransformation: Energy
	nd its dynamics.				
	dian Energy sc		D 11		
0.	1			e	Bio-fuels in India, their
-	-	-		-	n pattern, Sector wise
		-	-		nd Renewable Energy:
	_			-	gy sources. Electricity
	, Energy security	y, Ellergy collse		its importance.	
	nergy Policy	rita faaturaa Sa	homes of P	EE under Energy C	onservation Act-2001-
•••				•••	nergy System, Energy
	0		0	U U	Designated consumers,
	-				003, Integrated Energy
policy, National		-		•	integrated Energy
	nergy Audit		(
		ion of Energy	managemen	t and objectives. Is	SO 50001 to Manage
		••	-	•	ergy Performance and
	<i>,</i> - 0 <i>j</i> - 01		,	1	0,

the EnMS, Plan-Do-Check-Act (PDCA) cycle, Benefits of Implementing ISO 50001, New ISO 50001 Version, Requirements of ISO 50001:2018 Clauses (S.No. 1 to 10) correspond with clause numbers of the Standard)

Energy audit- definition and need, Types of Energy audit, Energy audit methodology, Energy audit instruments, Energy audit reporting, Analysis and recommendations of energy audit, Benchmarking of Sectorial Energy Efficiency, Energy audit software.

Unit 5 Energy Economics

Need of Investment, Costing of Utilities - Determination of cost of steam, natural gas, compressed air and electricity, Financial Analysis Techniques - Simple payback period, Time value of money, Net Present Value (NPV), Return on Investment (ROI), Internal Rate of Return (IRR), Risk and Sensitivity analysis.

Unit 6 Environmental Impact and climate change

Energy and Environment, Global environmental issues- Acid rain, Ozone layer depletion, Global Warming and climate change, Loss of biodiversity. International agreements: United Nations Framework convention on climate change (UNFCCC), Conference of Parties (COP), The Kyoto Protocol, Clean Development Mechanism (CDM).

Books and other resources

Text Books:

- 1. Energy Management Principles, C.B.Smith, Pergamon Press
- 2. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press

References Books:

- 1. TEDDY Year Book Published by Tata Energy Research Institute (TERI).
- 2. World Energy Resources: Charles E. Brown, Springer2002.
- 3. 'International Energy Outlook' -IEA annual Publication
- 4. Energy Management Handbook, Wayne C. Turner, The Fairmont Press Inc., 5th Edition, Georgia.
- 5. BEE Reference book: no.1/2/3/4.

Web References:

- 1. <u>www.aipnpc.org</u>
- 2. <u>www.beeindia.gov.in</u>

		302022MJ: E	nergy Mod	elling Lab	
Teaching	g Scheme	Cred	its	Examina	tion Scheme
Practical	2 Hrs./Week	Practical	1	Term Work	50 Marks
Prerequisites:	Engineering Grap	hics, Solid Mode	elling & Drat	fting, Engineering Tl	hermodynamics
Course Object					
	re about energy s			dings.	
	erstand energy pe		e		
	-	skills for energy	y modeling c	of buildings through	software like e-Quest.
Course Outcon					
-	of the course, le				
	LOPE Energy m				
	LAIN factors inv			ildings	
CO3. ASSE	ESS energy perfo	uidelines for L		Conduction	
	0			conduction	
Link to downle	oad e-Quest ope	en source softw	are		
https://www.doe	e2.com/equest				
		Te	rm Work		
The learner sha	ll complete follo	wing activities	as a Term-W	Vork:	
Basic Energy n	nodeling of min	imum two floor	r building w	ith Schematic Desi	gn (SD) Wizard in e-
Quest software	/Design builder	and preparation	n of detailed	report. Following	methodology shall be
followed for en	ergy modeling a	nd simulation.			
1. Modelir	ng of minimum t	wo floor buildir	ng.		
2. Apply E	Building Envelop	e Construction.			
3. Apply E	Exterior openings	s and features.			
4. Apply f	or activity and so	chedule.			
5. Apply in	nternal loads like	e lighting, HVA	C, etc.		
6. Comple	te the simulatior	1			

End-Semester 70 Marks Prerequisite Courses: Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics. Course Objectives: 1. To provide detailed understanding of energy efficiency of Thermal utilities. 2. To assess the energy performance of Thermal utilities. 3. To make student conversant with energy conservation opportunities in Thermal Utilities. On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. C02. DEMONSTRATE energy efficiency of thermal utilities. C03. ASSESS energy efficiency of thermal utilities. C04. ILLUSTRATE energy conservation opportunities in thermal utilities. C05. DEMONSTRAE best practices in Thermal Utilities. C05. DEMONSTRAE best practices in Thermal Utilities. C05. DEMONSTRAE best practices of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion of oil, coal and gas, Draft system and combustion control. Unit 1 Fuels and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization		302023	BMJ: Energy E	fficiency o	f Thermal Utilities	
End-Semester 70 Marks Prerequisite Courses: Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics. Course Objectives: 1. To provide detailed understanding of energy efficiency of Thermal utilities. 2. To assess the energy performance of Thermal utilities. 3. To make student conversant with energy conservation opportunities in Thermal Utilities. Ourse Outcomes: On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. C02. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal utilities. CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRATE best practices in Thermal Utilities. CO5. DEMONSTRATE best practices in Thermal Utilities. CO5. DEMONSTRATE onergy conservation opportunities. Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion of oil, coal and gas, Draft system and combustion control. Unit 1 Fuels and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers. Operational features, Retr	Teaching	Scheme	Credi	its	Examina	ation Scheme
Prerequisite Courses: Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics. Course Objectives: 1. To provide detailed understanding of energy efficiency of Thermal utilities. 2. To assess the energy performance of Thermal utilities. 3. To make student conversant with energy conservation opportunities in Thermal Utilities. Course Outcomes: On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal Utilities. CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRATE energy conservation opportunities. CO4. ILLUSTRATE energy conservation opportunities. CO5. DEMONSTRATE best practices in Thermal Utilities. CO5. DEMONSTRATE energy conservation opportunities. Course Outeons Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of f	Theory	4 Hrs./Week	Theory	4	In-Semester	30 Marks
Thermodynamics. Course Objectives: 1. To provide detailed understanding of energy efficiency of Thermal utilities. 2. To assess the energy performance of Thermal utilities. 3. To make student conversant with energy conservation opportunities in Thermal Utilities. Course Outcomes: On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal Utilities. CO5. DEMONSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. CO5. DEMONSTRAE best practices of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion of oil, coal and gas, Draft system and combustion control. Unit 1 Fuels and FBC Boilers and FBC Boilers and FBC Boilers Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction of FBC boilers, Operational fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam reco					End-Semester	70 Marks
Course Objectives: 1. To provide detailed understanding of energy efficiency of Thermal utilities. 2. To assess the energy performance of Thermal utilities. 3. To make student conversant with energy conservation opportunities in Thermal Utilities. Course Outcomes: On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal utilities. CO5. DEMONSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. CO4. ILLUSTRATE energy conservation opportunities. Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion of oil, coal and gas, Draft system and combustion control. Unit 1 Fuels and Combustion Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization			in Mechanical	Engineerin	g, Engineering Ther	modynamics, Applied
1. To provide detailed understanding of energy efficiency of Thermal utilities. 2. To assess the energy performance of Thermal utilities. 3. To make student conversant with energy conservation opportunities in Thermal Utilities. Course Outcomes: On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal Utilities. CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRATE best practices in Thermal Utilities. CO5. DEMONSTRATE on opportunities in thermal utilities. CO5. DEMONSTRATE on opportunities in thermal utilities. CO5. DEMONSTRATE best practices in Thermal Utilities. CO5. DEMONSTRATE consultion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion. Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers Introduction in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization						
On completion of the course the learner will be able to; CO1. EXPLAIN thermal utilities and their function. CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal utilities. CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. CO6. DEMONSTRAE best practices in Thermal Utilities. CO7. Fuels and Combustion Introduction of tuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion. Combustion. Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties f steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam di	1. To prov 2. To asses	ide detailed und	rformance of Th	ermal utilit	ies.	
C01. EXPLAIN thermal utilities and their function. C02. DEMONSTRATE energy efficiency of thermal utilities. C03. ASSESS energy efficiency of thermal Utilities C04. ILLUSTRATE energy conservation opportunities in thermal utilities. C05. DEMONSTRAE best practices in Thermal Utilities. Course Contents Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and Cassification,	Course Outcon	nes:				
CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal Utilities CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. Course Contents Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types an Classification, Performance evaluation	1			,		
CO3. ASSESS energy efficiency of thermal Utilities CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. Course Contents Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Re						
C04. ILLUSTRATE energy conservation opportunities in thermal utilities. C05. DEMONSTRAE best practices in Thermal Utilities. Course Contents Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical					utilities.	
Course Contents Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration	CO4. ILLU	ISTRATE energ	y conservation	opportuniti		S.
Unit 1 Fuels and Combustion Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration	CO5. DEM	IONSTRAE bes				
Introduction of fuels, Properties of solid, liquid and Gaseous fuels, Properties of Agro residues, combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine			Cours	se Content	S	
combustion, Combustion of oil, coal and gas, Draft system and combustion control. Unit 2 Boilers and FBC Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities. FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration	Unit 1 Fu	els and Combu	istion			
Unit 2Boilers and FBCBoilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities.FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential.Unit 3Steam Distribution and UtilizationProperties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilizationUnit 4FurnacesTypes and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine		· 1	· 1		· •	U
Boilers: Types, Combustion in boilers, Performance's evaluation, Analysis of losses, Feed water treatment, Blow down, Energy conservation opportunities.FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential.Unit 3Steam Distribution and UtilizationProperties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings.Case study related to steam distribution and utilizationUnit 4FurnacesTypes and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5Cogeneration			coal and gas, D	Praft system	and combustion con	ntrol.
treatment, Blow down, Energy conservation opportunities.FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential.Unit 3Steam Distribution and UtilizationProperties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings.Case study related to steam distribution and utilizationUnit 4FurnacesTypes and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories:Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine			1 11		1	
FBC: Introduction, Mechanism of fluidized bed combustion, Advantages, Types of FBC boilers, Operational features, Retrofitting FBC system to conventional boilers, Saving potential. Unit 3 Steam Distribution and Utilization Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine	• •				•	of losses, Feed water
Operational features, Retrofitting FBC system to conventional boilers, Saving potential.Unit 3Steam Distribution and UtilizationProperties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilizationUnit 4FurnacesTypes and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine		•••	-	-		Types of FBC boilers
Unit 3Steam Distribution and UtilizationProperties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilizationUnit 4FurnacesTypes and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine					-	
Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine	_				6	<u>r</u>
Condensate and flash steam recovery system, Identifying opportunities for energy savings. Case study related to steam distribution and utilization Unit 4 Furnaces Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace. Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine		team, Assessme	ent of steam di	istribution	losses, Steam leaka	ages, Steam trapping,
Unit 4FurnacesTypes and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine						
Types and classification, Performance evaluation, Various losses in furnace, Instruments required to monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine	Case study relat	ed to steam dist	ribution and util	lization		
monitor the furnace, General fuel economy measures in Furnace.Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine						
Insulation and Refractories: Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine						nstruments required to
simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine			•			
properties, Typical refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls. Unit 5 Cogeneration Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine						
Furnace walls. Unit 5 Cogeneration Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine						
Unit 5CogenerationNeed of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine			in muusutat (and 110at 105505 110111
Need of cogeneration, principle of cogeneration, Steam turbine cogeneration systems, Gas turbine		generation				
		8	e of cogeneration	on, Steam t	urbine cogeneration	systems, Gas turbine
cogeneration systems, reciprocating engine cogeneration systems, Classification of Cogeneration	-		-		-	-

Systems, Factors Influencing Cogeneration Choice, Important Technical Parameters for Cogeneration, Quality of thermal energy needed, Prime Movers for Cogeneration, Typical Cogeneration Performance Parameters, Merits of Cogeneration Systems, Case Study related to cogeneration in sugar industry. Tri-generation

Unit 6 Waste Heat Recovery

Waste heat recovery-Sources of waste heat and its potential applications, Waste heat survey and measurements, Data collection, Limitations and affecting factors, Heat recovery equipment and systems, Heat Exchangers, Incinerators, Regenerators and Recuperates, Waste Heat boilers, System Integration.

Books and other resources

Text Books:

- 1. Boilers Types, Characteristics and functions Carl D. Shields (Mc-Graw Hill book)
- 2. Industrial Furnaces (Vol I & II) and M.H. Mawhinney, (John Wiley Publications)
- 3. Refractories and their Uses Kenneth Shaw, (Applied Science Publishers Ltd.)

References Books:

- 1. Handbook on Energy Audit and Environment management, Abbi Y. A., Jain Shashank, TERI, Press, New Delhi, 2006
- 2. Boiler Operator's Guide Fourth Edition, Anthony L Kohan, McGraw Hill
- 3. BEE Reference book: no.1/2/3/4.

Web References:

- 1. www.aipnpc.org
- 2. www.beeindia.gov.in

Teaching Scheme Theory 04 Hrs/W	e				
	-	Cree	lits	Examinati	on Scheme
•	/eek	Theory	04	In-Semester	30 Marks
		·		End-Semester	70 Marks
Prerequisite Courses Basic Electrical Engined Thermodynamics, Appl Course Objectives 1. To familiarise w 2. To make student 3. To assess energy Course Outcomes On completion of the co CO1. DEMONSTR CO2. DEMONSTR CO3. EXPLAIN as CO4. SUMMARIZ CO5. DEMONSTR	ied Ther vith Elec t conver y efficier ourse, lea ATE en ATE en sessmen E energ	rmodynami trical utiliti sant with E ncy of elect arner will b ergy efficie ergy saving t of T&D lo y efficient 1	es. lectrical en- rical utilition e able to ency of elect g opportunitosses in por- ighting.	Engineering, Engineering, Engineering, Engineering, Engineering, Engineering, Engineering, Engineering, Engine	eering
CO3. DEMONSTR	AIE	4	se Content		
Transformer losses and programme of distributi Power Factor Improv selection and location automatic power factor Case study of electricity Unit 2 Electric Motors- Electric Motors- Type motor performance, mo saving opportunities, Er	on trans vement: of capa correction bill cal otors s, Losse tor char	former. Ele methods of acitor, perfo on, distribu- culation and es in Induct acteristics,	tion motors Rewinding	kWh and kVAh b actor improvement sessment of power nsformer losses cal to reduce electricity , Motor efficiency, verses replacement	illing. t and its benefits, r factor capacitor, culations. y bills.
Unit 3CompressedCompressed air Systemair system components,and efficiency, Typesopportunities.	s: Type Capacit	s and classi y and leaka	ge assessm	ent, Factors affectin	ig the performance
	-	•		Cooling Towers	
HVAC and Refrigerate and applications of HV, of Refrigeration plants, plants, Performance ass their application, Energy Cooling Tower : Types control strategies and er	AC and Factors sessment y conser s and p	Refrigerati affecting per t of split an evation oppo- performance	on systems erformance d package ortunities. e evaluation	in Industry, Perfor and energy efficien air conditioning un n, Efficient system	mance assessment acy of refrigeration it, Heat pump and n operation, Flow

Unit 5 Fans and Blowers and Pumping systems

Fans and Blowers: Fan types and applications, Fan characteristics and performance curves, Fan laws, Factors affecting efficiency, Design and selection criteria, Pressure drop and system resistance, flow control strategies, performance assessment, Energy conservation opportunities.

Pump and Pumping systems: Types, Performance evaluation, Efficient system operation, Flow control strategies, Boiler feed water pump, pumping system for Municipal drinking water, Sewage water pumps, Agricultural pump sets, Energy conservation opportunities.

Unit 6Lighting System and DG Set System

Lighting Systems: Light Sources and Types of lamps, Terminology used in Lighting systems, recommended illuminance standard, Method of calculating illuminance, Energy efficient lighting controls, Energy saving opportunities in lighting systems.

Diesel Generating system: Factors affecting selection, Energy performance assessment of diesel conservation avenues

Reference Books:

- 1. Handbook of Electrical Installation Practice- Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, by Anil Valia, Lighting System
- 3. Analysis and design of Energy Systems Hogde b.K. (Prentice hall 1988)
- 4. Energy management and control system –Vol-I, II –M.C.Macedo (John Willy)
- 5. BEE Reference book: no.1/2/3/4.
- 6. <u>www.aipnpc.org</u>
- 7. www.beeindia.gov.in

		402025N	1J: Lab Pra	octice	
Teaching	Scheme	Cred	its	Examina	ntion Scheme
Practical	2 Hrs./Week	Practical	01	Term Work	50 Marks
		-	odelling & D	Drafting, Engineerin	g Thermodynamics
÷	ives: This cours				
0	ze energy mana ecent trends in e			ctrical equipment an	nd systems.
Course Outcon	nes:				
On completion	of the course, le	arner will be ab	le to		
CO1: ANA	LYSIS of electri	city bill of com	mercial and	industrial load.	
CO2: DESI	GN size and loc	ation capacitor	for power fa	ctor correction.	
	•	0		ent in electrical utili	
CO4: WRIT					ities of energy saving.
	G	uidelines for L	aboratory (Conduction	
Instruction: A	ny five lab pra			lowing. Lab practi	ice 07 is compulsory.
		-	rm Work		
-	-			-	ectricity bill of any be verified on online
calculator)					
•	-		•	•	bill of any industrial
project and	verify it with m	anual calculatio	n. Same wil	l be verified on onli	ne calculator)
	of illumination	•		•	
-				correction in any	industrial/commercial
	ch as pumping s				
		-		ioning system, lift a	
-	· •			any industrial or co	1
					ith calculation, energy
0 11	ortunities, benefi	· · ·		0,	
-	ng drive system	5	speed drive	•	
-	of capacitor on e		bill		
-	saving opportun	•••			
a. Lifergy	ouving opportun				

Credits Examination Scheme Theory 4 Hrs./Week Theory 4 In-Semester 30 Marks Prerequisite Courses: End-Semester 70 Marks Basic Electrical Engineering, Systems in Mechanical Engineering, Engineering Theory 4 In-Semester 30 Marks Prerequisite Courses: Basic Electrical Engineering, Systems in Mechanical Engineering, Engineering Theory 4 In-Semester 70 Marks Course Objectives Image: Course objectives 1. To familiarise sustainable practices in electrical and thermal utilities. 2. To make student conversant with renewable energy systems. 3. To make student conversant with energy efficient buildings. Course Outcomes Image: Course of course learner will be able to COI. DEMONSTRATE best practices in electrical and thermal utilities. CO2. EVALUATE performance of solar thermal systems. CO3. DESIGN Solar photovoltaic system. CO4. ILLUSTRATE different components and working of wind mill. CO5. DEMONSTRATE biomass gasifier for energy conversion. CO6. ILLUSTRATE Energy efficient building and building codes. Solar Thermal Systems Sustainable energy, Solar water heating sys		402026MJ	: Sustainab	le energy Con	version Systems	
Image: Prerequisite Courses: End-Semester 70 Marks Basic Electrical Engineering, Systems in Mechanical Engineering, Engineering Thermodynamics Course Objectives 1. To familiarise sustainable practices in electrical and thermal utilities. 2. 2. To make student conversant with renewable energy systems. 3. 3. To make student conversant with energy efficient buildings. 70 Marks Course Outcomes On completion of the course, learner will be able to CO1. DEMONSTRATE best practices in electrical and thermal utilities. CO2. EVALUATE performance of solar thermal systems. CO3. DESIGN Solar photovoltaic system. CO4. ILLUSTRATE different components and working of wind mill. CO5. DEMONSTRATE biomass gasifier for energy conversion. CO6. ILLUSTRATE Energy efficient building and building codes. Course Content Unit 1 Solar Thermal Systems Sustainable energy, Solar water heating systems (Active and passive), Flat Plate Collector, He Air Collector, Evacuated Tube Collector, Parabolic, Compound Parabolic and Fresnel Sola	Teaching S	Scheme	Cr	edits	Examinatio	on Scheme
Prerequisite Courses: Basic Electrical Engineering, Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics Course Objectives 1. To familiarise sustainable practices in electrical and thermal utilities. 2. To make student conversant with renewable energy systems. 3. To make student conversant with energy efficient buildings. Course Outcomes On completion of the course, learner will be able to CO1. DEMONSTRATE best practices in electrical and thermal utilities. CO2. EVALUATE performance of solar thermal systems. CO3. DESIGN Solar photovoltaic system. CO4. ILLUSTRATE different components and working of wind mill. CO5. DEMONSTRATE biomass gasifier for energy conversion. CO6. ILLUSTRATE Energy efficient building and building codes. Course Content Unit 1 Solar Thermal Systems Sustainable energy, Solar water heating systems (Active and passive), Flat Plate Collector, He Air Collector, Evacuated Tube Collector, Parabolic, Compound Parabolic and Fresnel Sola	Theory	4 Hrs./Week	Theory	4	In-Semester	30 Marks
Basic Electrical Engineering, Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics Course Objectives 1. To familiarise sustainable practices in electrical and thermal utilities. 2. To make student conversant with renewable energy systems. 3. To make student conversant with energy efficient buildings. Course Outcomes On completion of the course, learner will be able to CO1. DEMONSTRATE best practices in electrical and thermal utilities. CO2. EVALUATE performance of solar thermal systems. CO3. DESIGN Solar photovoltaic system. CO4. ILLUSTRATE different components and working of wind mill. CO5. DEMONSTRATE biomass gasifier for energy conversion. CO6. ILLUSTRATE Energy efficient building and building codes. Course Content Unit 1 Solar Thermal Systems Sustainable energy, Solar water heating systems (Active and passive), Flat Plate Collector, He Air Collector, Evacuated Tube Collector, Parabolic, Compound Parabolic and Fresnel Sola					End-Semester	70 Marks
Solar industrial process heating systems. Unit 2 Solar Photovoltaic Energy Conversion Photovoltaic Principal, Solar photovoltaic system design, Shadow analysis, Performance evaluation of SPV systems, Economics of SPV system. Unit 3 Wind Energy Wind Energy Basics, Power Content, Wind turbine types- Vertical Axis Type, Horizontal Axis Constant Speed Constant Frequency, Variable speed Variable Frequency, Up Wind, Dow Wind, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generator Driv	Prerequisite CoBasic Electrical IThermodynamicsCourse Objective1. To famili2. To make3. To make3. To make3. To make0n completion ofCO1. DEMOCO2. EVALCO3. DESICCO4. ILLUSCO5. DEMOCO6. ILLUSCO6. ILLUSCO6. ILLUSSustainable energAir Collector, EConcentrators, CSolar industrial pUnit 2SolarPhotovoltaic Prievaluation of SPUnit 3WindWind Energy BasConstant Speed	Durses: Engineering, S Es, Applied The ves iarise sustainab student conver student conver student conver of the course, le ONSTRATE bis UATE perform GN Solar photo STRATE differ ONSTRATE bis STRATE Energ Thermal Syst gy, Solar water wacuated Tube Central Receive process heating Photovoltaic I incipal, Solar V systems, Eco Energy sics, Power Cor Constant Freq	ystems in Mermodynamic le practices in rearner with remersant with remersion earner will be east practices nance of solar ovoltaic system comass gasifing y efficient be Courrems heating system Collector, Fer System, Per systems. Energy Composition photovoltaic conomics of S ntent, Wind to uency, Variar	echanical Engi in electrical an newable energy ergy efficient l e able to in electrical an ar thermal syste ems and worki er for energy c building and bu rse Content ems (Active ar Parabolic, Com Performance ev version system desig PV system.	End-Semester incering, Engineering d thermal utilities. y systems. buildings. ad thermal utilities. ems. ng of wind mill. conversion. hilding codes. ad passive), Flat Pla pound Parabolic a valuation of solar to gn, Shadow analys Vertical Axis Type, riable Frequency, 1	70 Marks ng ng te Collector, Hot nd Fresnel Solar thermal systems, sis, Performance Horizontal Axis, Up Wind, Down

Unit 6 Best Practices in Energy Efficient Technology

Maximum demand controllers, Automatic power factor controllers, Energy efficient motors, Soft starters with energy saver, Variable speed drives, Energy efficient transformers, Electronic ballast, Occupancy sensors, Energy efficient lighting controls, IOT application for chiller system, Energy saving potential of each technology. Case study related to energy efficient technologies.

Reference Books:

- 1. Solar Engineering of Thermal Process- J.A. Duffie & W.A. Beckman
- 2. Solar Energy Engineering- S.A.Kalogirou
- 3. Wind Energy Data for India- Anna Mani
- 4. Wind Energy- Sathyajith Mathew
- 5. Non-Conventional Energy Sources- B.H.Khan
- 6. Biomass Renegerable Energy D.O.hall and R.P. Overeed (John Wiley and Sons, New york, 1987)
- Biomass Gasification Principles and Technology, Energy technology review No. 67, -T.B. Read (Noyes Data Corp., 1981)
- 8. BEE Reference book: no.1/2/3/4.
- 9. <u>www.aipnpc.org</u>
- 10. www.beeindia.gov.in

The student shall 1. Conduct of prepare d Format for 1. Ackno 2. Execu 3. Energy a. Int b. Ge c. En d. Co ov e. Ma f. Pro g. Pro h. Hii i. Ma j. En	2 Hrs./Week Proceed and provide the analysis of the analysis o	Course the followin audit of any nudit report of Energy A the plant ls and descri- luction cost s nd areas description any onsumption malysis n opportunit be prepared h double spared	y Indust t in the p udit Rep iption (raw ma data ana ties with d using I	t ties as a Ter ry/Hotel/C prescribed port: terials, ener llysis economic Latex prefer	commercial format. rgy, chemic analysis rably (defau	als, manpower,
prepare d Format fo 1. Ackno 2. Execu 3. Energy a. Int b. Ge c. En d. Co ov e. Ma f. Pro g. Pro h. Hi i. Ma j. En	detailed energy detailed energy or preparation of owledgement ative Summary y audit details troduction about eneral plant details troduction about energy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	the followin audit of any of Energy A of Energy A the plant ls and descri- luction cost s nd areas description any onsumption malysis n opportunit be prepared h double spa	ng activit y Indust t in the J udit Rej iption (raw ma data ana ties with d using I	ties as a Ter ry/Hotel/C prescribed port: terials, ener llysis economic Latex prefer	commercial format. rgy, chemic analysis rably (defau	als, manpower,
 Conduct of prepare d Format for Acknoi Execution Energy a. Intility Gee c. En d. Condition ove e. Material f. Proding. Product f. Material f. Material f. En i. Material j. En 	detailed energy detailed energy or preparation of owledgement ative Summary y audit details troduction about eneral plant details troduction about energy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	audit of any audit report of Energy A the plant ls and descri- luction cost s nd areas description an onsumption inalysis n opportunit be prepared h double spared	y Indust t in the p udit Rep iption (raw ma data ana ties with d using I	ry/Hotel/C prescribed port: terials, ener llysis economic Latex prefer	commercial format. rgy, chemic analysis rably (defau	als, manpower,
prepare d Format fo 1. Ackno 2. Execu 3. Energy a. Int b. Ge c. En d. Co ov e. Ma f. Pro g. Pro h. Hi i. Ma j. En	detailed energy a for preparation of owledgement ative Summary y audit details troduction about eneral plant details troduction about energy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	the plant ls and descri- luction cost s nd areas description am onsumption inalysis n opportunit be prepared h double spa	t in the p udit Re iption (raw ma data ana ties with d using I	brescribed port: terials, ener llysis economic Latex prefer	format. rgy, chemic analysis rably (defau	als, manpower,
Format fo 1. Ackno 2. Execu 3. Energy a. Int b. Ge c. En d. Co ov e. Ma f. Pro g. Pro h. Hit i. Me j. En	or preparation of owledgement ative Summary y audit details troduction about eneral plant details nergy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	of Energy A the plant ls and descri- luction cost s nd areas description an onsumption malysis n opportunit be prepared h double spa	udit Re iption (raw ma data ana ties with d using I	port: terials, ener llysis economic Latex prefer	rgy, chemic analysis rably (defau	
 Ackno Execut Energy a. Int b. Ge c. En d. Co ov/ e. Ma f. Pro g. Pro h. Hit i. Ma j. En • 	owledgement ative Summary by audit details troduction about eneral plant details troduction about energy audit team omponent of produce rehead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	the plant ls and descri- luction cost s nd areas description an onsumption inalysis n opportunit be prepared h double spa	iption (raw ma data ana ties with d using I	terials, ener llysis economic Latex prefer	analysis ably (defau	
 2. Execut 3. Energy a. Int b. Ge c. En d. Co ov e. Ma f. Prog. proh. Hit i. Ma j. En • 	tive Summary y audit details troduction about eneral plant detail nergy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	ls and descri luction cost s nd areas description an onsumption alysis n opportunit be prepared h double spa	(raw ma data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
 3. Energy a. Int b. Ge c. En d. Co ov e. Ma f. Prog. proh. Hit i. Ma j. En • 	y audit details troduction about eneral plant detail nergy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall <u>throughout) wit</u>	ls and descri luction cost s nd areas description an onsumption alysis n opportunit be prepared h double spa	(raw ma data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
a. Int b. Ge c. En d. Co ov e. Ma f. Pro g. Pro h. Hit i. Mo j. En •	troduction about eneral plant detail nergy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall <u>throughout) wit</u>	ls and descri luction cost s nd areas description an onsumption alysis n opportunit be prepared h double spa	(raw ma data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
 b. Ge c. En d. Co ov e. Ma f. Prog. proh. Hi i. Ma j. En • 	eneral plant detail nergy audit team omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall <u>throughout) wit</u>	ls and descri luction cost s nd areas description an onsumption alysis n opportunit be prepared h double spa	(raw ma data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
 c. En d. Co ov. e. Ma f. Prog. proh. Hi i. Ma j. En • 	hergy audit team component of prod verhead and other ajor energy use a coduction process rocess flow diagra istorical energy co easurement and a hergy conservatio The report shall <u>throughout) wit</u>	luction cost s nd areas description m onsumption malysis n opportunit be prepared h double spa	(raw ma data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
d. Co ove e. Ma f. Pro g. Pro h. Hi i. Mo j. En •	omponent of prod verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	s nd areas description am onsumption alysis n opportunit be prepared h double spa	data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
e. Ma f. Pro g. Pro h. Hi i. Ma j. En •	verhead and other ajor energy use a roduction process rocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	s nd areas description am onsumption alysis n opportunit be prepared h double spa	data ana ties with d using I	llysis economic Latex prefer	analysis ably (defau	
f. Pro g. Pro h. Hi i. Mo j. En •	oduction process focess flow diagra istorical energy co- easurement and a nergy conservatio The report shall <u>throughout) wit</u>	description am onsumption alysis n opportunit be prepared h double spa	data ana ties with d using I	economic Latex prefer	ably (defau	llt font
g. Pro h. Hi i. Ma j. En •	ocess flow diagra istorical energy co easurement and a nergy conservatio The report shall throughout) wit	um onsumption inalysis n opportunit l be prepared <u>h double spa</u>	data ana ties with d using I	economic Latex prefer	ably (defau	llt font
h. Hi i. Me j. En •	istorical energy co easurement and a nergy conservatio The report shall throughout) wit	onsumption malysis n opportunit l be prepared <u>h double sp</u>	ties with d using I	economic Latex prefer	ably (defau	llt font
i. Me j. En •	easurement and a nergy conservatio The report shall throughout) wit	nalysis n opportunit l be prepared h double spa	ties with d using I	economic Latex prefer	ably (defau	llt font
j. En •	nergy conservatio The report shall throughout) wit	n opportunit l be preparec h double spa	d using I	Latex prefer	ably (defau	ılt font
•	The report shall throughout) wit	l be prepared h double spa	d using I	Latex prefer	ably (defau	ılt font
	throughout) wit	h double spa	0	-	•	lit font
			acing un	опупонгог	I A4 Dage.	
			eft	Right	Тор	Bottom
	1 450		Aargin	Margin	Margin	margin
	A-4 (8.5'' * 1		.5''	1''	1''	1''
		• / 1		1		
	Section titles sh	ould be bold	d typed i	n all capita	l letters and	should be left
•	aligned.		. cypeu i	un cupita		
	Sub-Section hea	adings shoul	ld be alig	ning at the	left. bold a	nd Title Case
	(the first letter of	v	-			
•	Figure No. and			-	,	the title in 10 p
•	Use SI system of			-• F•, -•8		F
2. Field visit	t to any one of th	•	-	able/Susta	inable ener	rgv
	ergy efficient Pla	-				
-	luring evaluation				•	
a. Solar th	hermal system/So	olar PV Plan	t/Solar r	oof top		
b. Wind d	lata centre/Wind	Farm				
	ss gasification pla		-		• •	/Bio-gas Plant
	efficient buildin	0	-	0		
e. Waste l		nt/Co-gener	ation/Tr	i-generation	n Plant.	